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Motivation&Challenges

Large language models (LLMs) are increasingly employed for complex tasks that

process multiple generation calls in a tree structure with shared prefixes of to-

kens, including few-shot prompting, multi-step reasoning, speculative decoding.
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How make use of shared generation calls for acceleration is challenging:

C1: How to ensure prefix-awareness in memory access of KV cache?

C2: How to split the tree-structured KV cache for load balancing and high

GPU utilization?
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QKV Preparation Phase. QKVwill be grouped logically to partitions with

IO-awareness of shared prefixes’ KV cache and load-balancing.

Attention Calculation Phase. The attention calculation will be executed in

QKV groups with a global reduction afterward.

DeFTAlgorithm Design
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（a) Dataflow of a two-cascaded decoding tree and its different partition strategies for QKV preparation.

（b) Q-Guided grouping V.S. KV-Guided grouping. KV splitting is for additional parallelism. 
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1. KV-Guided Grouping. DeFT reduces redundant KV loads by grouping

queries based on shared KV blocks, enabling prefix-aware attention.

2. Flattened Tree KV Splitting. DeFT improves load balance by chunking large

KV blocks, ensuring better SM utilization across layers.

Workloads&Baselines

We compare DeFT with Flash-Decoding, Tree Attention-Medusa, and Radix At-

tention across three tasks including few-shot prompting, multi-step reasoning,

and speculative decoding.

Table 1. Comparison of QKV partitioning strategies for baselines and DeFT. For IO redundancy,

significant issues are highlighted in red, while negligible ones are in blue. “Q” refers to queries,

and “KV” refers to the KV cache. “DCM” stands for Dense Causal Mask (a matrix), and “BCM”

refers to Bit Causal Mask (a set of 64-bit integers). “PA” represents partial results during

attention calculations, including QKT , Softmax, etc. More ? symbols indicate better-balanced
workloads for QKV partitions.

Attention Algorithm Grouping Indicator KV Split Granularity IO Redundancy Load-balancing Level

Flash-Attention Q-guided - KV ?

Flash-Decoding Q-guided by block KV ? ? ?

Radix Attention Q-guided by block KV ? ? ?

Tree Attention-S Q-guided by block KV and BCM ? ? ?

Tree Attention-M entire tree by GEMM in PyTorch DCM and PA ? ? ?

Vanilla Tree Attention entire tree no split DCM and PA ?

DeFT-Node KV-guided by tree node Q ?

DeFT-Node-Chunk KV-guided by tree node, then by block Q ??

DeFT-Flatten KV-guided by block Q and BCM ? ? ?

Table 2.Workloads generation. ToT-BFS stands for Tree-of-Thoughts using breadth-first search.

APPS is a competitive programming problem dataset. Medusa is a speculative decoding

framework. “GoT” stands for Graph-of-Thoughts, which contains iteration records using

GPT-3.5 for complex reasoning tasks within ToT-BFS.

Task Prompt Dataset Decoding Tree Source Decoding Tree Collection Method Stopping Criteria

Few-shot prompting APPS - Pad the prompt to 4000 tokens 400 iterations

Multi-step reasoning 4 tasks in GoT ToT-BFS Reconstruct from interaction records with GPT 3.5 in GoT End of task(∼ 3500 iterations)
Speculative decoding APPS Medusa Record token tree shape and accepted token length per step∼1000 steps(max length=6000)

Efficiency Results

Table 3. Comparison of DeFT-Flatten and baselines in average decoding latency (in seconds)

for tree-based decoding. Here, b represents the tree width, and t denotes the token tree size
(i.e., the number of tree-structured queries). The fastest method is in bold, and the second

fastest is underlined. Radix Attention is the best baseline in decoding latency. ? denotes
out-of-memory (OOM) errors for the A100 80GB GPU. Speedup Upper-bound (no attention)

refers to the maximum speedup we could achieve for Radix Attention if we exclude the

attention computation and only run other components including MLP.

Memory Method Few-shot Prompting Multi-Step Reasoning Speculative Decoding

b=20 b=30 b=50 Sorting Document Keyword Set t=32 t=64 t=128 t=256

Unpaged Flash-Decoding 78.96 131.19 191.09 429.65 241.20 32.75 51.76 574.50 1128.45 ? ?

Tree Attention-Medusa 52.58 103.90 144.07 380.87 236.86 33.52 50.10 263.40 483.35 924.97 1881.51

Paged Radix Attention 12.37 14.08 16.54 104.79 69.61 11.25 17.03 54.66 69.75 108.56 188.66

DeFT-Flatten 9.98 10.99 12.48 94.67 66.95 10.90 16.10 42.23 46.60 56.96 84.27

Attention Speedup over Radix Attention 1.73× 1.63× 1.70× 1.39× 1.15× 1.21× 1.34× 1.96× 2.41× 3.11× 3.59×

Decoding Speedup over Radix Attention 1.24× 1.28× 1.33× 1.10× 1.03× 1.03× 1.05× 1.29× 1.50× 1.91× 2.23×

Speedup Upper-bound(no attention) 1.71× 2.08× 2.51× 1.96× 1.82× 1.70× 1.76× 1.89× 2.89× 3.34× 4.36×

DeFT-Flatten can achieve up to 2.23× end-to-end latency speedup thanks to

3.59× attention speedup, with a reduction of 73 − 99% KV cache IO.

Ablations

Table 4. [Different KV Splitting Strategies] Comparison of DeFT-Node, DeFT-Node-Chunk and

DeFT-Flatten in average attention latency (second) with NVIDIA A100 (80GB) for Llama3-8B

model(GQA). The fastest method is in bold, and the second fastest is underlined. Radix

Attention is the best baseline in decoding latency.

Memory Method Few-shot Prompting Multi-Step Reasoning Speculative Decoding

b=20 b=30 b=50 Sorting Document Keyword Set t=32 t=64 t=128 t=256

Paged Radix Attention 5.99 7.30 9.96 39.37 24.69 3.11 5.13 25.73 40.47 76.10 145.43

DeFT-Node 10.59 10.62 10.85 42.96 33.29 6.16 9.58 34.59 34.41 34.96 41.78

DeFT-Node-Chunk 8.52 9.69 13.45 49.63 36.37 4.77 7.40 14.54 20.28 32.57 57.26

DeFT-Flatten 3.47 4.07 5.87 28.41 21.45 2.57 3.83 13.15 16.79 24.46 40.56

DeFT-Flatten achieves the best performance across all tree structures.

DeFT-Node-Chunk improves over DeFT-Node by splitting large nodes,

enhancing load balance.

However, DeFT-Node-Chunk suffers when many small nodes exist (e.g.,

t=256), due to extra QKV groups and GPU kernel launches.

The influence of prompt length for attention speedup.

As prompt length increases, DeFT-Flatten achieves increasingly higher speedups

over Radix Attention. For example, when prompt length = 20K and Queries = 64,

DeFT-Flatten is up to 4.3× attention speedup compared with Radix Attention.
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