
DEFT: Decoding with Flash Tree-attention
for Efficient Tree-structured LLM Inference

Jinwei Yao1,4,∗ Kaiqi Chen2,∗ Kexun Zhang3 Jiaxuan You 4,†

Binhang Yuan5 ZekeWang2,† Tao Lin1,†

1Westlake University 2Zhejiang University 3Carnegie Mellon University 4University of Illinois Urbana-Champaign 5Hong Kong University of Science and Technology

Motivation&Challenges

Large language models (LLMs) are increasingly employed for complex tasks that

process multiple generation calls in a tree structure with shared prefixes of to-

kens, including few-shot prompting, multi-step reasoning, speculative decoding.

Prompt 1

Sequence-based decoding

Generation 1

P

P1 G1
P1.1 G1.1

P1.2 G1.2

Search
History

P2 G2

Search
History

P2.1 G2.1

P2.2 G2.2

Few-shot
examples

P1

P2

G1

G2
P

G1

G2

1)Self-consistency 2) Few-shot prompting

Prompt

Prompt

P

Step 1(G1）

Prompt 2 Generation 2

Step 2(G2）Step history

Step history Step 3(G3）

t0 t2 t4

t0
t2

t1
t3

t4

Draft models
/heads

1.token tree
generation

2.verify 3.keep
KV cache

Current
Step

4) Multi-model/head coordination
(e.g. Speculative decoding)

Tree-based decoding

Notations

shareable KV cache

non-shareable prompt

non-shareable generation

Prompt

3) Multi-step reasoning (e.g. Tree-of-thoughts)

How make use of shared generation calls for acceleration is challenging:

C1: How to ensure prefix-awareness in memory access of KV cache?

C2: How to split the tree-structured KV cache for load balancing and high

GPU utilization?

DeFT Overview

Query

Qb

Qa

Input Medata (in HBM)

KV0

KV1

KV2

Query
Tree KV

Tree
Topo

KV
Cache

KV-Guided
Grouping

Flattened
Tree KV
Splitting

Phase 1: QKV
Preparation

Phase 2: Attention Calculation

G0
G1

G2

SM0

QKV
Groups Global

ReductionA0
A1

A2

Partial
Attention

Final
Attention

DeFT Attention Kernel

HBM(2 TB/s) Shared Memory(19 TB/s)

SM1

SM2

SMi Gi

Load QKV group i to SM i
Notations

QKV Preparation Phase. QKVwill be grouped logically to partitions with

IO-awareness of shared prefixes’ KV cache and load-balancing.

Attention Calculation Phase. The attention calculation will be executed in

QKV groups with a global reduction afterward.

DeFTAlgorithm Design

Query IO

KV Cache IOKVi

Qi

QKV Group i with its IO

Dense Causal Mask (DCM) IO

Gi

Notations

SMi SM i with its shared memory

Bit Causal Mask (BCM) IO (64 bits)1 0

Tree Attention-MedusaG0

DCM:

Qa

Qb

Vanilla Tree Attention

KV1 KV2KV0

Masked:M

M

M

Qa

Qb

KV0 KV1 KV2

Q-Guided Grouping

KV-
Guided
Grouping

Q-
Guided
Grouping

KV-
Guided
Grouping
(ours)

Phase 1: QKV Preparation

Phase 2: Attention Calculation
SMiLoad Gi

Flash-Attention

KV0

Flash-Decoding/Radix Attention

Qa

Qb

G0

G1
KV0

KV1

KV2
KVbi

Qa

G00

KVb0 Qa

G01

KVb1

Qb

G10

KVb2 Qb

G11

KVb3

KVb0/2 KVb1/3
Sequence
KV Splitting

DeFT-Flatten

KV-BCM1: KV-BCM2:
1 1

1 0

1 1

0 1
for KV from KV0 for KV from KV1

for KV from KV2

for KV from KV2

Qa

Qb

G0

KV-BCM0: 1 1

KVb0

for KV from KV0

Qa

Qb

KVb1

G1 G2 Qa

Qb

KVb1

Flattened Tree KV Splitting (ours)

Two partition strategies
for high parallelism

Bitmask
no mask:1
masked: 0
64 bits in ;
low order bits
omitted are 0s.

1.Depth-first Flatten Tree KV

3.Get Bitmask (KVb1 for example)

KVb1from KV0 from KV1

1 01 1
Qa Qb Qa Qb KV-BCM1

(KV-guided)

KV2KV1

2.Evenly Blockwise KV KVb0 KVb1 KVb2

KV0

（a) Dataflow of a two-cascaded decoding tree and its different partition strategies for QKV preparation.

（b) Q-Guided grouping V.S. KV-Guided grouping. KV splitting is for additional parallelism.

Qb

Qa

Decoding Tree Metadata

KV0

KV1

KV2

Query
Tree KV

Data/Process in HBM

Data/Process in Shared Memory

No
Parition

Low parallelism

DeFT-Node

KV0
Qa

Qb

G0

KV1

KV2

G1

G2

Qa

Qb

Node KV
Splitting

DeFT-Node-Chunk

Qa

Qb

G00
KVb0

Qa

Qb

G01

KVb1

G2

Qa

Qb

G1KVb3

KVb4

KVbi

Q-Guided Grouping: without KV IO awareness KV-Guided Grouping(ours) : with KV IO awareness

(c) Flattened Tree KV Splitting for load-balanced paritions.

Load-
balanced

QKV paritions

IO-aware
for?

Query

KV

1. KV-Guided Grouping. DeFT reduces redundant KV loads by grouping

queries based on shared KV blocks, enabling prefix-aware attention.

2. Flattened Tree KV Splitting. DeFT improves load balance by chunking large

KV blocks, ensuring better SM utilization across layers.

Workloads&Baselines

We compare DeFT with Flash-Decoding, Tree Attention-Medusa, and Radix At-

tention across three tasks including few-shot prompting, multi-step reasoning,

and speculative decoding.

Table 1. Comparison of QKV partitioning strategies for baselines and DeFT. For IO redundancy,

significant issues are highlighted in red, while negligible ones are in blue. “Q” refers to queries,

and “KV” refers to the KV cache. “DCM” stands for Dense Causal Mask (a matrix), and “BCM”

refers to Bit Causal Mask (a set of 64-bit integers). “PA” represents partial results during

attention calculations, including QKT , Softmax, etc. More ? symbols indicate better-balanced
workloads for QKV partitions.

Attention Algorithm Grouping Indicator KV Split Granularity IO Redundancy Load-balancing Level

Flash-Attention Q-guided - KV ?

Flash-Decoding Q-guided by block KV ? ? ?

Radix Attention Q-guided by block KV ? ? ?

Tree Attention-S Q-guided by block KV and BCM ? ? ?

Tree Attention-M entire tree by GEMM in PyTorch DCM and PA ? ? ?

Vanilla Tree Attention entire tree no split DCM and PA ?

DeFT-Node KV-guided by tree node Q ?

DeFT-Node-Chunk KV-guided by tree node, then by block Q ??

DeFT-Flatten KV-guided by block Q and BCM ? ? ?

Table 2.Workloads generation. ToT-BFS stands for Tree-of-Thoughts using breadth-first search.

APPS is a competitive programming problem dataset. Medusa is a speculative decoding

framework. “GoT” stands for Graph-of-Thoughts, which contains iteration records using

GPT-3.5 for complex reasoning tasks within ToT-BFS.

Task Prompt Dataset Decoding Tree Source Decoding Tree Collection Method Stopping Criteria

Few-shot prompting APPS - Pad the prompt to 4000 tokens 400 iterations

Multi-step reasoning 4 tasks in GoT ToT-BFS Reconstruct from interaction records with GPT 3.5 in GoT End of task(∼ 3500 iterations)
Speculative decoding APPS Medusa Record token tree shape and accepted token length per step∼1000 steps(max length=6000)

Efficiency Results

Table 3. Comparison of DeFT-Flatten and baselines in average decoding latency (in seconds)

for tree-based decoding. Here, b represents the tree width, and t denotes the token tree size
(i.e., the number of tree-structured queries). The fastest method is in bold, and the second

fastest is underlined. Radix Attention is the best baseline in decoding latency. ? denotes
out-of-memory (OOM) errors for the A100 80GB GPU. Speedup Upper-bound (no attention)

refers to the maximum speedup we could achieve for Radix Attention if we exclude the

attention computation and only run other components including MLP.

Memory Method Few-shot Prompting Multi-Step Reasoning Speculative Decoding

b=20 b=30 b=50 Sorting Document Keyword Set t=32 t=64 t=128 t=256

Unpaged Flash-Decoding 78.96 131.19 191.09 429.65 241.20 32.75 51.76 574.50 1128.45 ? ?

Tree Attention-Medusa 52.58 103.90 144.07 380.87 236.86 33.52 50.10 263.40 483.35 924.97 1881.51

Paged Radix Attention 12.37 14.08 16.54 104.79 69.61 11.25 17.03 54.66 69.75 108.56 188.66

DeFT-Flatten 9.98 10.99 12.48 94.67 66.95 10.90 16.10 42.23 46.60 56.96 84.27

Attention Speedup over Radix Attention 1.73× 1.63× 1.70× 1.39× 1.15× 1.21× 1.34× 1.96× 2.41× 3.11× 3.59×

Decoding Speedup over Radix Attention 1.24× 1.28× 1.33× 1.10× 1.03× 1.03× 1.05× 1.29× 1.50× 1.91× 2.23×

Speedup Upper-bound(no attention) 1.71× 2.08× 2.51× 1.96× 1.82× 1.70× 1.76× 1.89× 2.89× 3.34× 4.36×

DeFT-Flatten can achieve up to 2.23× end-to-end latency speedup thanks to

3.59× attention speedup, with a reduction of 73 − 99% KV cache IO.

Ablations

Table 4. [Different KV Splitting Strategies] Comparison of DeFT-Node, DeFT-Node-Chunk and

DeFT-Flatten in average attention latency (second) with NVIDIA A100 (80GB) for Llama3-8B

model(GQA). The fastest method is in bold, and the second fastest is underlined. Radix

Attention is the best baseline in decoding latency.

Memory Method Few-shot Prompting Multi-Step Reasoning Speculative Decoding

b=20 b=30 b=50 Sorting Document Keyword Set t=32 t=64 t=128 t=256

Paged Radix Attention 5.99 7.30 9.96 39.37 24.69 3.11 5.13 25.73 40.47 76.10 145.43

DeFT-Node 10.59 10.62 10.85 42.96 33.29 6.16 9.58 34.59 34.41 34.96 41.78

DeFT-Node-Chunk 8.52 9.69 13.45 49.63 36.37 4.77 7.40 14.54 20.28 32.57 57.26

DeFT-Flatten 3.47 4.07 5.87 28.41 21.45 2.57 3.83 13.15 16.79 24.46 40.56

DeFT-Flatten achieves the best performance across all tree structures.

DeFT-Node-Chunk improves over DeFT-Node by splitting large nodes,

enhancing load balance.

However, DeFT-Node-Chunk suffers when many small nodes exist (e.g.,

t=256), due to extra QKV groups and GPU kernel launches.

The influence of prompt length for attention speedup.

As prompt length increases, DeFT-Flatten achieves increasingly higher speedups

over Radix Attention. For example, when prompt length = 20K and Queries = 64,

DeFT-Flatten is up to 4.3× attention speedup compared with Radix Attention.

2500 5000 7500 10000 12500 15000 17500 20000
Prompt Length (tokens)

5

10

15

20

25

30

At
te

nt
io

n
La

te
nc

y
(s

ec
on

d)

Token Tree Size (#Queries) = 32

2500 5000 7500 10000 12500 15000 17500 20000
Prompt Length (tokens)

Token Tree Size (#Queries) = 64

Attention Latency For Speculative Decoding(Generation length=1000)

Radix-Attention DeFT-Flatten DeFT-Node DeFT-Node-Chunk

Github: https://github.com/LINs-lab/DeFT ICLR 2025 Spotlight jinwei.yao1114@gmail.com

https://github.com
mailto:youremail@yale.edu

